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Results of theoretical and experimental studies of models of different systems of radiation-evaporation
thermal protection are presented; the overall-dimension-weight parameters of these systems and of
systems of passive radiation thermal protection are compared.

Introduction. Radiation-evaporation systems of combined thermal protection (CTP), whose operating
principle was first suggested in [1], are intended for protection of promising spacecraft-aircraft (aerospace
vehicles) against intense heating during flight. In both CTP and passive radiation (e.g., plate) thermal protec-
tion, the main portion of the heat flux coming to an object is reflected to the environment by radiation from
the outer surface of a heat insulation or a special heatproof screen heated to a high temperature. Unlike a
passive system, a portion of the heat flux passing through the heat insulation is spent mostly on phase trans-
formations (melting, evaporation, or sublimation) of the cooler lying under the heat insulation.

Being a semiactive thermal protection, CTP combines the advantages of radiation and evaporation
systems and has a number of merits over the existing passive (radiation or sublimation) and active (convec-
tion or transpiration) systems of thermal protection. As will be shown below, as compared to a passive plate
system, a substantial reduction in the thickness of the heat insulation with simultaneous considerable decrease
in the total weight of the system is possible in combined thermal protection.

In contrast to active transpiration or convection systems, CTP has no additional elements such as
tanks with a coolant and pipelines and pumps for its supply to the working zone. Another advantage of CTP
is self-regulation, since the flow rate of the coolant is determined by the heat flux coming to its carrier. These
factors guarantee the reliability and stability of CTP operation. The possibility of regulating the temperature
of the structure protected by controlling the pressure of the vapor in the evaporation cavity is an additional
merit of CTP.

The considered systems are promising and require both theoretical and experimental study. The devel-
opment of mathematical models of very complex processes of heat and mass transfer is important in both
designing these systems and conducting the corresponding experiments. Theoretical simulation must allow
one to estimate the effect of the main parameters of CTPs on the performance characteristics of these proc-
esses and, on this basis, to optimize the necessary tests [2]. A combined radiation-evaporation method can be
realized in different systems which differ in both structural intricacy and efficiency [1–4]. In the present
work, we are dealing with three different combined systems of thermal protection in comparison to passive
radiation thermal protection.

Theoretical and Experimental Modeling of CTP1. The system considered below can be used for
thermal protection of a structure with a free internal cavity. The experimental model tested is a cylindrical
structure with a diameter of 210 mm, a height of 25 mm, and a 1.5-mm-thick flat base. The model has a
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1-mm-thick removable cover at the center of which there is a drainage hole with a variable diameter. The
model is made of aluminum alloy.

The layer of material of thickness hd = 4 mm, which damps thermal stresses, is pasted onto the outer
surface of the model base, and a layer of heat insulation made of superthin quartz fiber is pasted onto the
material layer. The plate thickness hi is one of the main variable parameters of the systems modeled. The
structure described is a model of a system of radiation thermal protection (RTP). Apart from the elements
mentioned, the CTP1 model has a capillary-porous layer pasted onto the inner surface of the base and used
as the coolant (water) carrier.

The technique and the results of experimental investigations of the given RTP and CTP1 models are
described in [5] in detail. During the tests, the temperature of the outer surface of the plate Te and the air
pressure in the vacuum chamber were reproduced in accordance with their specified dependences on time.
These dependences [5] model a typical thermal effect on a reusable orbital spacecraft in its flight in the at-
mosphere for about 60 min with a maximum temperature of heat insulation equal to 1370 K. The main pur-
pose of the tests was determination of the minimum weight of both systems of thermal protection provided
that the maximum temperature of the model base does not exceed 433 K during the specified external ther-
mal effect. We note that the main drawback of the experimental technique of [5] is the absence of a guard
heater near the cover of the model which resulted in the presence of uncontrolled heat exchange with the
environment.

The considered systems are modeled numerically in a one-dimensional approximation. The coordinate
axis x is introduced along the normal to the model base with the origin on the outer surface of the plate. It
is assumed that the heat transfer in both the plate and the damping layer can be described with the effective
coefficient of thermal conductivity λ, which includes all three components of heat transfer: thermal conduc-
tivity of a solid matrix, radiation in a fiber medium, and thermal conductivity of a gas at a specified external
pressure. Radiative heat transfer in semitransparent heat-shield materials can satisfactorily be calculated in the
Rosseland approximation. The thermal conductivity of a gas can be approximated with account for its de-
pendence on the pressure, the temperature, and the diameter of fibers [6]. In the present consideration, by
analogy with [6], the following formulas that have been obtained as a result of numerical interpolation of
experimental data are taken for the effective coefficient of thermal conductivity λi and the specific heat ca-
pacity ci of a quartz plate:

λi (T) = 1.076⋅10−2 + 6.109⋅10−5 
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λa = 2.1⋅10−3 
T2 ⁄ 3

T + 122
 ,   µa = 7.2⋅10−4 λa ;

ci (T) = 32.13 + 1.91T − 7.19⋅10−4T2 ,   J ⁄ (kg⋅K) . (3)

Here ρi = 140 kg/m3 is the density of the quartz plate and ρi0 = 2650 kg/m3 is the density of the material of
the plate fibers. The best correlation with the available experimental data was obtained for the following val-
ues of the parameters: ξ = 0.9, A = 9.5, and b = 5⋅10−5 m. The dependences of the effective coefficient of
thermal conductivity of the plate on the temperature and the external pressure, which are based on Eq. (1),
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are shown in Fig. 1. The coefficient of thermal conductivity and the specific heat capacity of the damping
material are also interpolated by formulas (1) and (3) with different coefficients.

The boundary-value problem of heat transfer in the plate and the damping layer with account for the
heat exchange between the base and the cover of the model and the environment has the form

ρkck
∂T

∂t
 = 

∂
∂x

 



λk 

∂T

∂x




   (k = i, d) ; (4)

t = 0 :  T (x) = Tf = Tc = Ta = T0 ;   x = 0 :  T = Te (t) ; (5)
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∂T

∂x
 = Cf 

dTf
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 + β1 (Tf − Tc) − λeff 
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 ; (7)

Cc 
dTc

dt
 = β1 (Tf − Tc) − β2 (Tc − Ta) . (8)

Here Tf, Tc, and Ta are the temperatures of the base and the cover of the model and the surrounding air,
respectively, Cf and Cc are the total heat capacities of the base with a cylindrical wall and the cover of the
model related to unit surface, and β1 and β2 are the coefficients of heat exchange between the base and the
cover of the model and between the cover and the environment. We note that possible jumps of the tempera-
ture in the glue joints and the thermal conductivity of the glue are not taken into account in the boundary
conditions (6) and (7). The last term in the second condition (7) is introduced only in numerical modeling of
CTP1 and denotes the heat flux coming to the coolant carrier. Equation (8) serves for determination of the
temperature of the model cover.

The following procedure is used for determining the unknown coefficients of heat transfer β1 and
β2. It was found during the tests that the temperatures of the model base, the cover, and the glue joint of the

Fig. 1. Temperature dependences of the effective coefficient of thermal
conductivity of a quartz plate at atmospheric pressure (1) and in vacuum
(2). λi, W/(m⋅K); T, K.
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plate with a damping layer reach their maximum values Tf
max, Tc

max, and Td
max almost simultaneously. In this

case, we can neglect all the nonstationary terms in both the equation of heat transfer in the damping layer (4)
and conditions (7) and (8). Therefore, the heat flux to the model base and the corresponding coefficients of
heat transfer for the indicated instant of time can be estimated in the following way:

q = λd 
Td

max − Tf
max

hd

 ,   β1 = 
q

Tf
max − Tc

max ,   β2 = 
q

Tc
max − Ta

 . (9)

Based of the results of testing the RTP model (plate thickness hi = 46 mm) and formulas (9) we
calculated values of the coefficients of heat transfer β1 ≅  25 W/(m2⋅K) and β2 ≅  5 W/(m2⋅K).

According to the experimental study [5], the minimum mass per unit area and the thickness of the
plate of thermal-protection systems corresponding to it, which provide the required maximum temperature of
the model base, are 6.21 kg/m2 and 43.5 mm for RTP and 5.35 kg/m2 and 22 mm for CTP1. Thus, the
decrease in the total weight of CTP1, as compared to RTP, reached in the experiments amounts to about
14%.

In theoretical modeling of CTP1, the processes of heat and mass transfer and phase transformations
in a capillary-porous coolant carrier were taken into account on the basis of the approach of [7]. In contrast
to a traditional form [7, 8], the system of equations was represented in a divergent form convenient for nu-
merical calculations [9]:
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(10)

Here ceff(α) and λeff(α) are the effective specific heat capacity and the coefficient of thermal conductivity of
moist capillary-porous material, α is the volume concentration of the liquid in the pore (moisture content),
r0 is the specific heat of evaporation at 0 K, and Deff is the effective coefficient of diffusion of the vapor in
the air that allows for the crookedness of the pores [10].

Equations (10) describe the flow of a vapor-air mixture which is independent of the flow of a liquid.
When the moisture content is rather high, the air becomes restrained in the pores of the material. In this case,
in consideration of combined flow of the gas and the liquid the velocities of both phases are assumed to be
the same. Therefore, the flows of the air and the vapor can be defined as
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ja = 
1 − α

α
 

ρa

ρliq
 jliq ,   jv = 

ρv

ρa
 ja . (11)

Moreover, it is assumed that transition from the state of air restraint to independent flow of the
phases occurs with decrease in the moisture content within the range αg ≤ α ≤ αliq, where αg and αliq, which
depend on the structure of the capillary-porous material, are assumed to be known. For description of the
flow of the phases within the entire range of moisture content, the flows of the air and the vapor are repre-
sented as ji = fji

(1) +  (1 − f) ji
2 (i = v, a), where ji

(1) and ji
(2) are determined by expressions (10) and (11),

respectively; the function f is continuous with the first derivative, it changes from 0 to 1 within the range
αg ≤ α ≤ αliq and is equal to 1 when α ≤ αg and to 0 when α ≥ αliq.

The base of the model is assumed to be thermally thin. Then, initial and boundary conditions for the
presented system of equations have the form

hi + hd ≤ x ≤ hi + hd + hc.c ,   t = 0 :  T = T0 ,   α = α0 < 1 ,   ρa = 
p0 − pv.s (T0)

RaT0
 ,
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 .

(12)

Here Z = ρa
 ⁄ ρv, jliq.leak is the flow of the liquid displaced from the coolant carrier, and G is the flow rate of

the vapor-air mixture through the drainage hole, which is determined by the formulas of adiabatic outflow of
the gas from the cavity [11].

The main features of the numerical solution of the formulated problem (10)–(12) are presented in [2].
The coefficients of heat and mass transfer of the capillary-porous material were estimated by comparison of
calculated and experimental data. The corresponding technique is also described in [2]. The system of CTP1
was modeled numerically with the following set of parameters of the capillary-porous material: aliq =
2.5⋅10−12 m2/sec, Π = 0.8, α1 = 0.85, α2 = 0.95, Deff = 2⋅10−5 m2/sec, and K = 4⋅10−14 m2.

Numerical modeling of both systems revealed the importance of excluding uncontrolled leakage of
heat in experiments. For example, the maximum temperature of the model base calculated under adiabatic
conditions on the cover, i.e., for the heat-transfer coefficients β1 = β2 = 0, exceeds the experimental values
for different thicknesses of the plate by 130–110 K for RTP and 150–100 K for CTP1. Calculations made for
the above-indicated finite values of these coefficients are in good agreement with experimental data in the
case of RTP. However, the maximum temperature calculated for the CTP1 model is still 50–30 K higher than
that measured. The latter can be explained by the more intense heat transfer from the cover of the model to
the environment due to additional convection caused by the outflow of the vapor from the drainage hole and
flow around the model cover. Therefore, the value of the coefficient β2 must be higher in this case.

General Structure of CTP2 and CTP3. The main difference of the two combined systems, which
will be considered in what follows, from CTP1 is the placement of the coolant carrier on the outer side of
the structure protected against external heating. It is assumed that it has the shape of a flat plate of thickness
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hw with a density of the material ρw and a specific heat capacity cw. We introduce a Cartesian coordinate
system with the x axis perpendicular to the plate and directed toward the external heat flux. A layer of ma-
terial saturated with the coolant is on the outer surface of the plate. Heat and mass transfer and phase trans-
formations in this layer are not considered in the model suggested, in particular, the temperature gradient in
the layer is disregarded. Therefore, the origin of the x axis lies on the outer surface of the coolant carrier
which is considered to be the evaporation surface. The y axis lies on this surface. We consider an individual
fragment of the system of thermal protection of overall length 2L toward the y axis (−L ≤ y ≤ L).

The inner surface of the layer of porous heat insulation lies at a distance x1 from the evaporation
surface. The thickness of the insulation layer is hi = x2 − x1, where x2 is the coordinate of its outer surface.
The external flat screen made of dense heatproof material lies at a distance x3 from the evaporation surface.
The screen serves for protection of the porous heat insulation against heavy aerodynamic loads and is consid-
ered to be thermally thin. The screen thickness he, the density of the material ρe, the specific heat capacity ce,
and the radiating power of the surface εe are specified. The outer surface of the screen is subjected to the
effect of the nonstationary heat flux qe(t). Part of this flux (qr = εeσTe

4) is reflected to the environment. An-
other formulation of the problem presupposes the assignment of a temperature of the external screen Te(t).

In the first of the systems considered, a superthin screen is placed on the inner surface of the insula-
tion layer that is directed to the coolant carrier. This screen ensures the impermeability of the insulation layer
to gas and a high thermal resistance of the range 0 ≤ x ≤ x1 for a small value of the radiating power of the
screen surface εs. The coolant is evaporated to a flat channel of finite length that is formed by this reflecting
screen and the evaporation surface. The channel has a symmetry axis at y = 0. Both ends of the channel
converge, thus ending with slots of width δ. The converging parts of the channel and the slots model a real
drainage system. The vapor flows out of this channel to the environment with a pressure pe(t). This version
of thermal protection has the name CTP2. The second version, denoted as CTP3, does not have the internal
reflecting screen. The coolant vapor flows through the layer of porous heat insulation to the channel between
this layer and the external heatproof screen. Then the vapor flows out through the drainage holes.

Modeling of CTP2. In the general case, one can use a packet of different heat-insulation materials as
an insulation layer in CTP2. However, to compare this system to a passive radiation one we will consider the
quartz plate described in the previous sections. It is assumed that variation in the temperature of the external
screen and in the pressure of the environment along the segment of thermal protection of length 2L can be
neglected. Taking into account the conditions of heat insulation at Y = L, we can use a one-dimensional ap-
proximation in formulation of the boundary-value problem of heat transfer in the insulation layer, which in
dimensionless variables has the form
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∂X
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∂θi
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∂θi
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x

x3
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Hw,e = 
(ρch)w,e

ρici
∗ x3

 ,   F = 
qe (t)

σT∗ 4
 ,   Sti = 

σT∗ 3x3

λi
∗  ,

λi
∗  = λi (T

∗ , p∗ ) ,   ci
∗  = ci (T

∗ ) ,   T∗  = 273 K ,   p∗  = 105  Pa .

(16)

In the approximate external boundary condition (15), we disregard the thermal resistance of the gap
between the plate and the external screen and, consequently, the temperature difference between them. The
first boundary condition in (14) is used in calculation of combined thermal protection. The condition of con-
tinuity of the heat flux, which will be formulated later, serves for determination of an unknown temperature
of the reflecting screen θi1. The second condition in (14) is used for determining the thickness of the plate of
radiation thermal protection. In this case, it is assumed that the plate lies directly on the protected structure.
The minimum thickness of the plate of the passive system is determined from the condition that during the
external thermal effect the temperature of the protected structure does not exceed a specified value Tw

max =
433 K.

Under uniform external conditions, the flow in the vapor-discharge channel is symmetric relative to
the line of spreading y = 0. The following assumptions relative to the geometric parameters of both systems
are introduced:

x3

L
 << 1 ,  





δ
x1





2

 << 1   or   




δ
x3 − x2





2

 << 1 . (17)

Heat and mass transfer in the vapor-discharge channel that satisfies conditions (17) is described by
the system of Prandtl equations [12], where the longitudinal pressure gradient is one of the unknown func-
tions. Moreover, these conditions provide a slow flow with a Mach number much smaller than unity [13] and
weak evaporation. The latter means that the pressure of the vapor on the evaporation surface can be consid-
ered to be equal to the pressure of saturated vapor at the temperature of this surface. Since the pressure of
the vapor-air mixture is constant in the cross section of the channel, it satisfies the equation p = pv.s(Tw) +
(ρgT)wRa. The formulation of the boundary-value problem considered is stated in [4] in detail.

To calculate the heat and mass transfer in the channel numerically, we supplement (16) with the fol-
lowing dimensionless variables:

Y = 
y

L
 ,  τ = 

tu∗

x3

 ,  U = 
u

u∗  ,  V = 
v

Yv∗  ,   M = 
ρv

ρv
∗  ,  B = 
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L

Y
 

1

ρv
∗ v∗ 2

 ,

ρv
∗  = 

p∗

RvT∗  ,  u∗  = 
δ

L
 (RvT∗ )1 ⁄ 2 ,  v∗  = u∗  

L

x3

 .

The equations of continuity, concentration of the air, y-momentum, state of the vapor-air mixture,
energy, and flow rate and total pressure of the mixture with the corresponding boundary conditions in dimen-
sionless form take the following form [4]:

∂M

∂τ
 + MV + 
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 = 0 ,   M 
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 + MU 
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 ,
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 ,   Ko = 
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cpvT∗  , St = 
σT∗ 3x3

λ0
 ,   ε1 = 

εwεs

εw + εs − εwεs
 .

(23)

In this problem it is assumed that the coolant is water and the initial temperature of the system is
θ0 > 1, i.e., the coolant is in the liquid state. Therefore, the density of saturated vapor is described by the
empirical formula (10). In Eq. (18), the expression for adiabatic outflow of the gas from the cavity is used.
Here sRmt = Rm(sgt) and sgt and sθt are the concentration of the air and the temperature averaged across
the channel.

The second condition in (20) is the condition of impermeability of the evaporation surface to air. The
finite values of the heat capacities of the structure and the coolant and the change in the mass of the latter
are allowed for by the presence of the function H, which is determined by Eq. (22), where m is the initial
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mass of the coolant per unit surface, in the last boundary condition of (20). Here, the radiation heat exchange
between the reflecting screen and the evaporation surface, which are considered to be diffusely gray, is also
taken into account.

The similarity numbers (23) of the problem depend on the coefficients of viscosity, thermal conduc-
tivity, and diffusion of the vapor-air mixture which are calculated with the initial conditions (19). These co-
efficients of transfer which enter into the equations and boundary conditions are made dimensionless using
their initial values. The coefficient of diffusion of the mixture is calculated from the formula D(T)  =
2.16⋅10−5T1.8 m2/sec, the coefficient of viscosity is determined from the Wilkey formula, and the coefficient
of thermal conductivity is calculated from the Lehmann formula [14]. The coefficients of transfer of the mix-
ture components are determined from formula (2) for the air, while for the steam they are determined from
formulas obtained by numerical interpolation of tabulated data from [15]: λv(T = (−5.8 + 0.0856T)⋅10−3

W/(m⋅K), and µv(T) = (−3.05 + 0.0406T)⋅10−6 kg/(m⋅sec).
The condition of continuity of the heat flux on the screen surface, which serves for determination of

its temperature, has the form

λi

λ0
 Λi 

∂θi

∂X
 (X1, Fo) = λ 

∂θ
∂X

 (X1, τ) + ε1 St [θ (X1, τ)4 − θ (0, τ)4] .

Based on the formulated conjugate boundary-value problem we can calculate the characteristics of
CTP2 with the specified changes in the external heat flux and pressure. To compare CTP2 to the passive
plate system, we made calculations in which the time dependences qe(t) and pe(t) were specified in the form
of trapezoids by schematic modeling of the takeoff of an aircraft for 10 min, a cruising flight of 40 min, and
landing for 10 min. In the calculations, the external heat flux changed from 0 to a maximum value of 105

W/m2 and again to 0; the pressure of the environment changed from the initial value p0 = 105 Pa to a mini-
mum value of 500 Pa and then increased to the initial value. The initial temperature of both the passive and
combined systems was T0 = 290 K.

The parameters of the quartz plate used as a high-temperature heat insulation have been determined
above. All the parameters of CTP2, except for the plate thickness, were specified: L = 0.5 m, x1 = 0.01 m,
δ = 5⋅10−5 m, ε0 = 0.1, and εw = εe = 0.8. It is assumed that the protected structure is made of aluminum
alloy and has the following parameters: hw = 0.002, ρw = 2800 kg/m3, and cw = 900 J/(kg⋅K).

The dependence of the total weight of CTP2 mc.t.p = ρihi + m on the thickness of heat insulation is of
principal interest. The initial mass of the coolant m was determined by iteration from the condition that by
the end of the thermal effect the coolant is evaporated completely. The results of comparative calculations of
radiation and combined systems are presented in Table 1, where the values of the plate thickness are given
in mm and those of mass are given in kg/m2.

It can be noted that the thickness of the plate in the passive system is virtually unacceptable for the
considered mode of external thermal effect. The combined system of thermal protection can guarantee not
only the real thickness of the thermal protection but also a considerable decrease in the total weight of it.

TABLE 1. Overall-Dimension-Weight Characteristics of Radiation Thermal Protection and CTP2 (hi, thickness
of the heat insulation, mm; m, mass, kg/m2)

hi,r.t.p mr.t.p hi,c.t.p mliq mc.t.p mr.t.p.
 ⁄ mc.t.p

10 3.93 5.33 2.51

95.4 13.4 15 2.93 5.03 2.66

20 2.29 5.09 2.64
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Modeling of CTP3. This version of the system of thermal protection combines the properties of ra-
diation, evaporation, and transpiration systems. In what follows, we consider the three main parts of CTP3:
an evaporation cavity (region 1), a layer of porous insulation (region 2), and a vapor-discharge channel (re-
gion 3). The corresponding subscripts are used to denote the pressure in these three regions.

The boundary-value problem is formulated in a one-dimensional approximation with the following
additional simplifications. Since the heat capacity of the vapor per unit volume is much lower than that in the
porous insulation, we can neglect the nonstationary term in the equation of energy for the vapor. It is also
assumed that the hydrodynamic time of relaxation of the flow tu = x3

 ⁄ u∗  is small compared to the charac-
teristic time of warming-up of the system under the action of the external thermal effect. Under these as-
sumptions, vapor transfer can be considered in a quasistationary approximation, i.e., time as a parameter
enters into all the equations describing vapor flow. The presence of the air in CTP3 is disregarded in this
formulation of the problem.

It follows from the equations of continuity and momentum that across the evaporation cavity both the
vapor flow and the pressure are constant, with the latter being equal to the pressure of saturated vapor at the
temperature of the evaporation surface. In the equation of energy, convective and conductive terms are taken
into account. The boundary condition on the evaporation surface reflects the fact that heating of the protected
structure and evaporation of the coolant occur due to conductive-convective heat transfer in the gas phase and
radiative heat exchange between the surfaces of the coolant carrier and the porous heat insulation.

Thus, the equations of heat and mass transfer with the corresponding boundary conditions in the
evaporation cavity have the following form:

ρvu = j (t) ,   p1 = pv.s (Tw) ,   jcpv 
dTv

dx
 = 

d

dx
 



λv 

dTv

dx



 ,

x = 0 :  ρwcwhw 
dTw

dt
 + rj = λv 

dTv

dx
 + ε1σ (Ti1

4  − Tw
4 ) ,   r = r0 − (cliq − cpv) T .

Heat and mass transfer in a porous layer of heat insulation is modeled with allowance for the tem-
perature difference between the vapor and the porous medium and with allowance for the interphase heat
transfer. Vapor flow in the porous insulation is assumed to be slow; therefore, it is described by the Darcy
equation

j = − 
K

µv
 ρv 

dp2

dx
 . (24)

The continuity equation for region 2 yields j = j(t). Taking account of this fact and of the equation
of state of an ideal gas, we can integrate (24) and obtain the formula for the vapor pressure in the porous
layer:

p2 (x, t) = 






p1

2 − 2j 
Rv

K
 ∫ 
x1

x

µvTvdx







1 ⁄ 2

 .

We give the equation of energy of the vapor with account for the interphase heat transfer in the po-
rous layer:

jcpv 
dT

dx
 + sκ (Tv − Ti) = 

d

dx
 



λv 

dTv

dx



 . (25)
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Here s and κ are the effective area of the inner surface of the porous body per unit of its volume and the
coefficient of convective heat transfer.

The equation of energy of the porous layer and the corresponding boundary conditions have the fol-
lowing form:

ρici 
∂Ti

∂t
 + sκ (Ti − Tv) = 

∂
∂x

 



λi 

∂Ti

∂x




 ;

x = x1 :  λi 
∂Ti

∂x
 = ε1σ (Ti

4 − Tw
4 ) ,

x = x2 :  λi 
∂Ti

∂x
 = ε2σ (Te

4 − Ti
4) ,   ε2 = 

εiεe

εi + εe − εiεe
 .

(26)

In order to simplify this consideration we assume that all quartz fibers, which form the plate, have
the shape of round cylinders of the same diameter d and are perpendicular to the x axis. In this case, the
specific internal area of the porous body is estimated as s = 4(1 − Π)/d.

Convective heat exchange between the gas and the porous matrix is a complex process. The relation
between local Nusselt (Nu = κd ⁄ λv) and Reynolds (Re = ρvud ⁄ µv) numbers is usually used for determination
of the coefficient of convective heat transfer in porous bodies [16]. In the present work, the correlation equa-
tion for a single cylinder from [17]

Nu = (0.4 Re1 ⁄ 2 + 0.06 Re2 ⁄ 3) Pr2 ⁄ 5 




µv (Tv)
µv (Ti)





1 ⁄ 4

 .

is taken for estimation of the effective coefficient of heat transfer.
We note that the boundary conditions for Eq. (26) take into account only the radiative heat exchange

between the surfaces of the insulation, the coolant carrier, and the external screen, since conductive and con-
vective heat transfer in regions 1 and 3 is provided by the gas phase. In our consideration, the effective co-
efficient of thermal conductivity of the insulation is determined by Eq. (1), where only the first two terms,
i.e., the thermal conductivity of a solid matrix and radiation, are taken into account. Convective heat transfer
in region 2 is described by Eq. (25).

As has been noted in the previous section, the component of the longitudinal velocity and the pres-
sure gradient in a flat channel with converging ends can be represented in the form v = yw(t) and ∂p3

 ⁄ ∂y =
yE(t). Then, in the quasistationary approximation, the equations of energy, continuity, and momentum, which
describe vapor flow in region 3, have the form

ρvucpv

dTv

dx
 = 

d

dx
 



λv 

dTv

dx



 ;   x = x3 :  Tv = Te ;

ρvu = j − ∫ 
x2

x

ρvwdx ;  x = x3 :  u = 0 ;

ρvu 
dw
dx

 + ρvw2 + E = 
d
dx

 

µv 

dw
dx




 ;   x = x2, x3 :   w = 0 .

(27)
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By analogy with the previous section, the unknown second derivative of pressure along the channel
E is determined from the condition of non-flow on the surface of the external screen. Moreover, the rate of
evaporation which enters into (27) is related to the vapor flow rate through the drainage hole:

Γδp3 (Rv sTvt)−1 ⁄ 2 Q (π) = jL ,

where Γ and Q(π) are determined by Eqs. (18).
The initial temperature of the system and the gas pressure in it are specified:

t = 0 :  Ti = Tv = T0 ,   p = p0 .

If the condition p0 > pv.s(T0) is satisfied, then in calculations it is assumed that, as long as
pe > pv.s(Tw) at the nonstationary stage of heating, the pressure in all parts of the thermal-protection system
is equal to the external pressure and the rate of evaporation of the coolant can be neglected [4]. When the
condition pv.s(Tw) ≥ pe(t) is reached, the formulated boundary-value problem is solved without additional sim-
plifications.

On the basis of the model suggested, we calculated heat and mass transfer in CTP3 for the same
specified parameters as in the case of calculation of CTP2. We specified the additional parameters which are
substantial for analysis of CTP3, namely: the width of the external channel x3 − x2 = 0.001 m, the radiating
powers of all the surfaces participating in radiative heat transfer εe,i,w = 0.8, the porosity of the heat insula-
tion Π = 0.9, its permeability K = 10−12 m2, and the diameter of fibers d = 2⋅10−4 m. The initial values of
the temperature and the pressure were T0 = 300 K and p0 = 105 Pa. The temperature of the external screen
and the pressure of the environment were found in the form of linear functions of time which change to their
limiting values Te

max = 1500 K and pe
min = 500 Pa. Then, both the temperature of the screen and the external

pressure remained constant.
The effect of the thickness of the heat insulation on the steady rate of evaporation of the coolant is

shown in Fig. 2; it is seen that curve 1 corresponds to CTP3, curve 2 represents the results for CTP2 where
the radiating power of the internal reflecting screen is εs = 0.1, and curve 3 corresponds to CTP2 and the
radiating power of the screen augmented to εs = 0.8.

The advantage of CTP3 (see Fig. 2) is related to the employment, to a certain degree, of the principle
of a transpiration system. In this case, heating of the vapor to the temperature of the external screen allows
one to use its heat capacity along with the heat of evaporation. Figure 2 demonstrates the considerable effect
of the radiating power of the reflecting screen in CTP2. It is of interest that the ratio of the rates of evapo-

Fig. 2. Dependences of the rate of evaporation of the coolant on the
thickness of the heat insulation. j, kg/(m⋅sec); hi, m.
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ration j3 ⁄ j2 (CTP3/CTP2) is constant and equals 0.46 within the considered range of variation of the plate
thickness for the high radiating power of the reflecting screen εs = 0.8 in CTP2. When εs = 0.1, the indicated
ratio decreases with increase in the insulation thickness: j3 ⁄ j2 = 0.75, 0.66, and 0.61 for hi = 1, 2, and 3 cm,
respectively, i.e., the efficiency of CTP3 increases compared to the efficiency of CTP2. Since the minimum
total weight of the radiation-evaporation thermal protection is reached with approximately equal masses of the
heat insulation and the initial supply of the coolant [3, 4], the ratio of the minimum weights of CTP2 and
CTP3 can be estimated by the ratio of evaporation rates of the coolant.

Conclusions. Theoretical and experimental investigations show that there is a possibility of simulta-
neously decreasing the thickness of the layer of heat insulation (2–6 times) and the total weight of the com-
bined systems of thermal protection (to 3 times) compared to their values in the passive plate thermal
protection. The suggested mathematical models of combined systems allow calculation of the main charac-
teristics of them, in particular, the rate of evaporation of the coolant and the distributions of temperature and
pressure. It is shown that the combined system, in which the coolant vapor flows through the layer of porous
insulation, is the most efficient among those considered.

NOTATION

a, coefficient of transfer of the liquid; b, mean diameter of the pores; B, dimensionless second deriva-
tive of pressure; c, specific heat capacity; C, dimensionless specific heat capacity; d, mean diameter of the
fibers; D, coefficient of diffusion; E, second derivative of pressure; f, function of the  transient state; F, di-
mensionless heat flux; g, concentration of air; G, gas flow rate through the hole; h, thickness; H, dimension-
less total heat capacity; j, mass flow; K, permeability; l, mean free path of molecules; L, half-length of the
fragment of thermal protection; M, dimensionless density of the vapor; p, pressure; P, dimensionless pressure;
q, heat flux; Q, dimensionless function of the flow rate; r, specific heat of evaporation; R, gas constant; S,
area of the model base; t, time; T, temperature; u and v, velocity components; U and V, dimensionless veloc-
ity components; W, internal volume of the model; x, y, coordinates; X, Y, dimensionless coordinates; Z, ratio
of the densities; α, moisture content; β, heat-transfer coefficient; δ, width of the drainage slot; ε, radiating
power; γ, adiabatic index; λ, coefficient of thermal conductivity; Λ, dimensionless coefficient of thermal con-
ductivity; µ, coefficient of dynamic viscosity; π, ratio of the pressures; Π, porosity; ρ, density; σ, Stefan–
Boltzmann constant; τ, dimensionless time; ω, dimensionless heat of evaporation; ξ, coefficient of
accommodation; Fo, Fourier number; Ko, Kossovich number; Nu, Nusselt number; Pr, Prandtl number; Re,
Reynolds number; Sc, Schmidt number; St, Stark number. Super- and subscripts: 0, initial values; a, air; c,
cover of the model; c.c, coolant carrier; c.t.p, combined thermal protection; d, damping layer; e, external con-
ditions and parameters; eff, effective value; f, base (foundation) of the model; g, gas; i, heat insulation; liq,
liquid; leak, displaced; m, vapor-air mixture; p, at constant pressure; r, radiation; r.t.p, radiation thermal pro-
tection; s, reflecting screen; v, vapor; v, at constant volume; v.s, saturated vapor; w, wall; *, characteristic
quantities.
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